1.马自达cx5三元催化器投诉解决了吗

2.马自达cx-5三元催化器亮故障灯怎么办

马自达5三元催化多少钱_进口马自达5发动机三元催化器

马自达CX-5五万公里的保养项目及费用

马自达CX-5五万公里保养已经算是大保养了,费用大概在800元到1000元左右的这个幅度,具体价格也要看当地的4S店。

马自达CX-5其保养项目主要是更换机油三滤以及全车油再有就是一些必要的常规检查项目,比如更换刹车油、变速箱油、转向助力油和防冻液等,检查刹车片的磨损情况,检查轮胎磨损及轮胎气压以及发动机外部皮带等橡胶部件的老化磨损情况是否正常,检查发动机变速箱以及减振器等有无漏油的现象。

再有就是根据车辆的使用情况检查一下进排气系统的积碳情况,如有必要则对进排气系统以及润滑油路进行清洗维护保养,一般包括:清洗喷油嘴、清洗节气门怠速阀、清洗进气道、清洗三元催化器以及清洗发动机润滑油路等。

马自达cx5三元催化器投诉解决了吗

电喷车为获得高排气净化率,降低排气中(CO)一氧化碳、(HC)碳氢化合物和(NOx)氮氧化合物成份,必须利用三元催化器。但为了能有效地使用三元催化器,必须精确地控制空燃比,使它始终接近理论空燃比。催化器通常装在排气歧管与消声器之间。氧传感器具有一种特性,在理论空燃比(14.7:1)附近它输出的电压有突变。这种特性被用来检测排气中氧气的浓度并反馈给电脑,以控制空燃比。当实际空燃比变高,在排气中氧气的浓度增加而氧传感器把混合气稀的状态(小电动势:O伏)通知ECU。当空燃比比理论空燃比低时,在排气中氧气的浓度降低,而氧传感器的状态(大电动势:1伏)通知(ECU)电脑。

ECU根据来自氧传感器的电动势差别判断空燃比的低或高,并相应地控制喷油持续的时间。但是,如氧传器有故障使输出的电动势不正常,(ECU)电脑就不能精确控制空燃比。所以氧传感器还能弥补由于机械及电喷系统其它件磨损而引起空燃比的误差。可以说是电喷系统中唯一有“智能”的传感器。 [编辑本段]氧传感器的组成  主氧传感器包括一根加热氧化锆元件的热棒,加热棒受(ECU)电脑控制,当空气进量小(排气温度低)电流流向加热棒加 热传感器,使能精确检测氧气浓度。

在试管状态化锆元素(ZRO2)的内外两侧,设置有白金电极,为了保护白金电极,用陶瓷包覆电机外侧,内侧输入氧浓度高于大气,外侧输入的氧浓度低于汽车排出气体浓度。

应当指出用三元催化器后,必须使用无铅汽油,否则三元催化器和氧传感器会很快失效。再注意,氧传感器在油门稳定,配制标准混合时较为重要的作用,而在频繁加浓或变稀混合时,(ECU)电脑将忽略氧传感器的信息,氧传感器就不能起作用。 [编辑本段]氧传感器的工作原理  氧传感器是利用陶瓷敏感元件测量各类加热炉或排气管道中的氧电势,由化学平衡原理计算出对应的氧浓度,达到监测和控制炉内燃烧空然比,保证产品质量及尾气排放达标的测量元件,广泛应用于各类煤燃烧、油燃烧、气燃烧等炉体的气氛控制。它是目前最佳的燃烧气氛测量方式,具有结构简单、响应迅速、维护容易、使用方便、测量准确等优点。运用该传感器进行燃烧气氛测量和控制既能稳定和提高产品质量,又可缩短生产周期,节约能源。

氧传感器的工作原理与干电池相似,传感器中的氧化锆元素起类似电解液的作用。其基本工作原理是:在一定条件下(高温和铂催化),利用氧化锆内外两侧的氧浓度差,产生电位差,且浓度差越大,电位差越大。大气中氧的含量为21%,浓混合气燃烧后的废气实际上不含氧,稀混合气燃烧后生成的废气或因缺火产生的废气中含有较多的氧,但仍比大气中的氧少得多。 在高温及铂的催化下,带负电的氧离子吸附在氧化锆套管的内外表面上。由于大气中的氧气比废气中的氧气多,套管上与大气相通一侧比废气一侧吸附更多的负离子,两侧离子的浓度差产生电动势。当套管废气一侧的氧浓度低时,在电极之间产生一个高电压(0。6~1V),这个电压信号被送到ECU放大处理,ECU把高电压信号看作浓混合气,而把低电压信号看作稀混合气。根据氧传感器的电压信号,电脑按照尽可能接近14.7:1的理论最佳空燃比来稀释或加浓混合气。因此氧传感器是电子控制燃油计量的关键传感器。氧传感器只有在高温时(端部达到300°C以上)其特性才能充分体现,才能输出电压。它在约800°C时,对混合气的变化反应最快,而在低温时这种特性会发生很大变化。 [编辑本段]氧传感器的杂波分析  概述

1.为什么要研究氧传感器波形上的杂波信号呢?

这是因为杂波可能是由于燃烧效率低造成的,只要上流动系统不是处在正确的工作状态下,催化器就不能被精确地测试,氧传感器波形的杂波能警告各个发动机气缸性能的下降,这时废气诊断是最主要的。因为它能发现催化器转换效率的降低和个别气缸的性能降低。杂波信号也妨碍燃油反馈控制系统控制器的正常运行(在发动机控制电脑中的反馈程序运行),“燃油反馈控制系统控制器”专门指起作用的软件程序(从现在起,称之为“反馈控制器”),它是接受氧传感器电压信号并计算正确的即时喷油或混合气控制命令的程序。 通常,反馈控制器程序不是设计成有效地去处理由非正常的系统操作和燃油控制命令所产生的氧传感器信号频率。杂乱的高频变动信号能使反馈控制器失掉控制精度,或失去“反馈节奏”。这里有几个影响,首先,当反馈控制器的操作精度受影响时,燃油混合比就会超出催化剂窗口,这将影响转换器的工作效率和废气排放。其次,当反馈控制器的操作精度受影响时,发动机性能也将受到影响。 杂波可以成为失去控制的废气进入催化剂的判定性指示,经常可发现当杂波存在时,进入催化剂的废气便没有了正确的混合气空燃比,理解氧传感器波形上的杂波对废气排放的修理诊断是很重要的。在一些情况下,杂波是催化转换效率减少的明显信号,随后就是尾气排放超出标准。此外,氧传感器波形上杂波的解释、对发动机性能或行驶能力诊断是一个有价值的工具。杂波是燃烧效率从一缸到另一个缸不平衡指示。对氧传器波形上的杂波的解释和理解对有效地运用氧传感器信号修理验证也是很重要的。 在氧传感强器波形上的杂波表明排气变化从一个缸到另一个缸的不平衡,或者是比较特别地从个别的燃烧过程中没有得到较高的氧的含量。大多数氧传感器当工作正常时能够比较快的反馈各个燃烧过程所产生的电压偏差。杂波的信号限制越大,从各个燃烧过程测得氧成分的差别就越大,在不同行驶方式下看到的杂波不但对确定稳态和瞬态废气试验失效的根本原因是重要的,而且也是有效的可驾驶性能诊断的判断依据。 在加速方式下与BC的峰值毛刺形成一对一废气波形的氧传感器信号杂波是一种非常重要的诊断信号,因为它意味着在有负荷的情况下点火出现断火现象。通常,杂波幅度越大。在排气中氧传感器的成份就越多,所以杂波是由于进入催化器的反馈气平均氧含量升高造成氧化氮排前增加的指示,在浓氧环境中(稀混合气)催化器中的氧化氮不能被减少(化学地)。 综上所述,已知一些反馈类型系统完全正常的氧传感器波形上的杂波信号对废气或发动机性能不产生明显影响。对于少量的杂波可以不去管它,而大量的杂波是重要的。这正说明诊断是一种艺术,要学会判断什么是正常的杂波,什么不是就需要实践,而最好的老师是经验,学习的最好方法是从观察不同行驶里程和不同类型的汽车上观察氧传感器波形。理解什么是正常的杂波,什么是不正常杂波,对有效地进行废气排放修理以及行驶能力诊断是非常有价值的,它值得花时间去学习。 对于大多数普通系统,一个软件波形是绝对有价值的,对正在控制着的系统拥有一张氧传感器参考波形,能判断出什么样的杂波是允许的、正常的,而什么样的杂波是应该关注的,关于好的杂波标准是:如果发动机性能是好的,则应该没有真空泄漏,废气中的碳氢(HC)化合物和氧含量是正常的。 在本部分的试验中将尽可能地给出大量的资料,以便去理解在这个训练中正好有充分的时间和空间来包括所有的关于这个的课题。

2.杂波产生的原因

氧传感器信号的杂波通常由以下原因引起:

A.缸的点火不良(各种不同的根本原因,点火系统造成的点火不良,气缸压力造成的点火不良真空泄漏和喷油嘴不平衡造成的点火不良);

B.系统设计,例如不同的进气管通道长度等等;

C.由于发动机和零部件老化造成的系统设计问题的扩大(由于气缸压力不平衡造成的不同的进气管通道长度问题的扩大);

D.系统设计,例如不同的进气管通道等等。

3.由点火不良气缸引起氧传感器波形的杂波,发动机的点火不良是如何引起杂波呢?

在点火不良状态下波形上的毛刺和杂波由那些燃烧不完全或根本不燃烧的单个燃烧时间或系列燃烧引起,它导致在气缸中有效氧化部分被利用,剩下的多余氧走到排气管中,并经过氧传感器。当传感器发现排气中氧成分变化时,它就非常快地产生一个低压或毛刺,一系列这些高频毛刺就组成称之为“杂波”东西。

4.产生毛刺的不同点火不良类型

a)点火系统造成的点火不良(例如:损坏的火花塞、高压线、分电器盖、分火头、点火线圈或只影响单个气缸或一对气缸的初级点火问题)。通常点火示波器可以用来确定这些问题或排除这些故障);

b)送至气缸的混合气浓造成的点火不良(各种可能的原因)对给定的危险混合气空燃比例约为13:1;

c)送至气缸的混合气过稀造成的点火不良(各种可能的原因)对给定的危险的混合气空燃比例为17:1;

d)由气缸压力造成的点火不良,它是由机械问题造成的,它使得在点火前燃油空气混合气的压力降低,并不能产生足够的热,这就妨碍了燃烧,它增加了排气中的氧含量。(例如气门烧损,活塞环断裂或磨损,凸轮磨损,气门卡住等);

e)一个缸或几个缸有真空泄漏造成的不良,这可以通过对所怀疑的真空泄漏区域(进气叶轮、进气歧管垫、真空管等)加入丙烷的方法来确定,看示波器的波形什么时候因加丙烷使信号变多,尖峰消失,当与一个缸或几个缸有关的真空泄漏造成进入气缸的混合气超过17:1时,真空泄漏造成的点火不良就发生了。

f)就喷油嘴喷射不平衡造成的点火不良仅在多点喷射发动机中,一个缸的油浓或稀混合气造成点火不良是因为喷油时每个喷油嘴实际喷射的油量太多了或太少(喷油嘴堵塞或卡住)造成的。当一个气缸或几个汽油中的混合气空燃比超过危险时17:1就产生了稀点火不良,低于13:1也产生浓点火不良,这就造成了喷油嘴喷油不平衡产生的点火不良。 通常,可以用排除由点火系统造成的点火不良、气缸压力的点火不良和单个气缸真空泄漏造成的可能性来判断。喷油不平衡。可以用汽车示波器排除自点火系统和气缸压力造成的点火不良(用发现点火系统造成的点火不良和动力平衡气缸压力问题)。排除与个别气缸有关的真空泄漏,通常用往可能产生真空泄漏的区域或周围加丙烷(进气歧管、化油器垫等)的方法,同时像从前说过的那样,从示波器上观察氧传感器信号波形的方法达到目的。通常,在多点燃油喷射发动机,如果不能证实a、b、和c类型造成的点火不良,那么不平衡造成氧传感器波形中的严重杂波的可能性就可以确定。 判断氧传感器的杂波的规则 如果氧传感器的信号上有明显的杂波,这种杂波对所判断的那一类系统是不正常的话,通常这将伴随着重复的、可测试出的怠速时的发动机故障(例如:每次气缸点火的的爆震)。通常,如果杂波是明显的,发动机的故障最终将与波形上的各个尖峰有关,没有明显的伴随着发动机故障的杂波是不容易消除的杂波(在某些情况下这是正确的),也就是说当在波形上产生杂波的个别尖峰最终与发动机故障无关时,那么在修理中想要排除它的可能性很小。 综上所说,判断杂泼的规则是:如果可断定进气歧管无真空泄漏,排气的碳氢化合物(HC)和氧的含量正常,发动机的转动或怠速都比较平衡的话,那么杂波或许是可以接收的,或是正常的。

许多汽车燃油反馈控制系统中,不但安装一个氧传感器,福特3.8L V6型从1980年制造出来的就装有两个氧传感,为了适应不断加强的EPA的废气控制要求,使用多个氧传感器的系统数量在不断增加。在1988年和更新的汽车上氧传感器的数目在连续地增加。此外,从1994年起一些汽车在催化器前和后各装一个氧传感器,这种结何可以用装在汽车上的OBD-Ⅱ系统来检查催化器的性能,在一定情况下,还可以增加对空燃比控制的精度。在任何情况下,由于氧传感器信号快使其成为最有价值的发动机性能诊断工具之一,氧传感器越多,对检修技术人员越有好处。

通常,燃油反馈控制系统的工程逻辑决定,氧传感器在靠近燃烧室的地方,燃油控制的精度越高,这主要是由于排气空气气流的特性确定的:例如气体的速度,通道的长度(气体瞬时太滞后)和传感器的响应的时间等等。许多制造商在每个气缸的每个排气歧管底下安装一个氧传感器,这样就能判定哪一个气缸有问题,这就排除了诊断失误的可能性,在许多情况下靠排除至少一半潜在有问题气缸来减少诊断时间。 用双氧传感器进行催化器监视 一个工作正常的催化转换器,配上正常控制燃油分配系统的燃油反馈控制系统,它可以保证最安全的将有害的排气成份变为相对无害的氧化碳和水蒸气,但是,催化器会因过热而受损(由点火不良等等),这导致催化剂表面减少和孔板金属烧结,这两点都将使催化器永久损坏。

当催化剂失效时就能知道,对环境和废气系统修理时,技术人员是十分重要的。

OBD-Ⅱ诊断系统的出现,对环境和催化剂的随车监视系统、OBD-II监视系统依据好或坏的催化剂的氧化特征作精确的检测手段。在稳定运行时,催化剂后面好的氧传感器(热的)应比催化剂前的任何一个氧传感器的信号波动少得多,这是由于在转换碳氢化合物和一氧化碳时正常运行的催化剂消耗氧化能力,这就减少了后氧传感器信号的波动。

后氧传感器的信号波动比氧传感器的信号波动要小的多。也要注意当催化剂“关断”(或达到运行温度),催化器开始储存和用氧做催化转换时,信号由于在排气中氧越来越少而升高。

当催化剂完全损坏时,催化剂的转换效率、以及它的氧储存能力丧失,因此,催化剂后部的排气中氧的含量如果不完全的话,则十分接近催化剂前部的排气中的氧的含量。 [编辑本段]氧传感器的检测  装有排气氧传感器的电控燃油喷射发动机,如果在运转中出现怠速不稳、加速无力、油耗增加、尾气超标等故障而供油、点火装置又无其他故障,那么极有可能是氧传感器及相关线路出了问题。

大多数发动机的电控系统都有自检功能,当氧传感器或相关部位发生故障时,电脑会自动记下故障内容,维修人员只需用专门的解码器读出故障代码即可发现问题所在。但如果没有专用设备怎么办呢?这里有几个方法可以很快检查出氧传感器的好坏。

如果怀疑怠速不稳或加速不良等故障是氧传感器引起的,检修时只需拔下氧传感器接头,如果发动机的故障消失,则说明氧传感器已经损坏,必须更换,如果发动机故障依旧,那么还要从其他地方找原因。

利用高阻抗的电压表也可以检查出氧传感器的好坏。把电压表并联在氧传感器的输出端,正常情况下,电压应在0-1V之间变化,中值在500mV左右,如果输出电压长时间保持某一数值而无变化,则表明氧传感器已经损坏。

实际上,氧传感器是一个相当耐用的部件,只要燃油质量过关,它可以使用3年或更长的时间。氧传感器的非正常损坏大多是由于燃油中含铅量超标造成的。这一点,驾驶装有三元催化装置汽车的司机务必要加以重视. [编辑本段]氧传感器的表征与故障  在使用三元催化转换器以减少排气污染的发动机上,氧传感器是必不可少的元件。由于混合气的空燃比一旦偏离理论空燃比,三元催化剂对CO、HC和NOX的净化能力将急剧下降,故在排气管中安装氧传感器,用以检测排气中氧的浓度,并向ECU发出反馈信号,再由ECU控制喷油器喷油量的增减,从而将混合气的空燃比控制在理论值附近。

目前,实际应用的氧传感器有氧化锆式氧传感器和氧化钛式氧传感器两种。而常见的氧传感器又有单引线、双引线和三根引线之分,;单引线的为氧化锆式氧传感器;双引线的为氧化钛式氧传感器;三根引线的为加热型氧化锆式氧传感器,原则上三种引线方式的氧传感器是不能替代使用的。

氧传感器一旦出现故障,将使电子燃油喷射系统的电脑不能得到排气管中氧浓度的信息,因而不能对空燃比进行反馈控制,会使发动机油耗和排气污染增加,发动机出现怠速不稳、缺火、喘振等故障现象。因此,必须及时地排除故障或更换。

氧传感器的常见故障

1.氧传感器中毒

 氧传感器中毒是经常出现的且较难防治的一种故障,尤其是经常使用含铅汽油的汽车,即使是新的氧传感器,也只能工作几千公里。如果只是轻微的铅中毒,接着使用一箱不含铅的汽油,就能消除氧传感器表面的铅,使其恢复正常工作。但往往由于过高的排气温度,而使铅侵入其内部,阻碍了氧离子的扩散,使氧传感器失效,这时就只能更换了。

另外,氧传感器发生硅中毒也是常有的事。一般来说,汽油和润滑油中含有的硅化合物燃烧后生成的二氧化硅,硅橡胶密封垫圈使用不当散发出的有机硅气体,都会使氧传感器失效,因而要使用质量好的燃油和润滑油。修理时要正确选用和安装橡胶垫圈,不要在传感器上涂敷制造厂规定使用以外的溶剂和防粘剂等。

2.积碳

 由于发动机燃烧不好,在氧传感器表面形成积碳,或氧传感器内部进入了油污或尘埃等沉积物,会阻碍或阻塞外部空气进入氧传感器内部,使氧传感器输出的信号失准,ECU不能及时地修正空燃比。产生积碳,主要表现为油耗上升,排放浓度明显增加。此时,若将沉积物清除,就会恢复正常工作。

3.氧传感器陶瓷碎裂

氧传感器的陶瓷硬而脆,用硬物敲击或用强烈气流吹洗,都可能使其碎裂而失效。因此,处理时要特别小心,发现问题及时更换。

4.加热器电阻丝烧断

对于加热型氧传感器,如果加热器电阻丝烧蚀,就很难使传感器达到正常的工作温度而失去作用。

5.氧传感器内部线路断脱。

6氧传感器外观颜色的检查

 从排气管上拆下氧传感器,检查传感器外壳上的通气孔有无堵塞,陶瓷芯有无破损。如有破损,则应更换氧传感器。

通过观察氧传感器顶尖部位的颜色也可以判断故障:

 ①淡灰色顶尖:这是氧传感器的正常颜色;

②白色顶尖:由硅污染造成的,此时必须更换氧传感器;

③棕色顶尖:由铅污染造成的,如果严重,也必须更换氧传感器;

④黑色顶尖:由积碳造成的,在排除发动机积碳故障后,一般可以自动清除氧传感器上的积碳。

氧传感器的作用

电喷车为获得高排气净化率,降低排气中(CO))一氧化碳、(HC)碳氢化合物和(NOX)氮氧化合物成份,必须利用三元催化器。但为了能有效地使用三元催化器,必须精确地控制空燃比,使它始终接近理论空燃比。催化器通常装在排气歧管与消声器之间。氧传感器具有一种特性,在理论空燃比(14/:7)附近它输出的电压有突变。这种特性被用来检测排气中氧气的浓度并反馈给电脑,以控制空燃比。当实际空燃比变高,在排气中氧气的浓度增加而氧传感器把混合气稀的状态(小电动势:O伏)通知ECU。当空燃比比理论空燃比低时,在排气中氧气的浓度降低,而氧传感器的状态(大电动势:1伏)通知(ECU)电脑。

ECU根据来自氧传感器的电动势差别判断空燃比的低或高,并相应地控制喷油持续的时间。但是,如氧传器有故障使输出的电动势不正常,(ECU)电脑就不能精确控制空燃比。所以氧传感器还能弥补由于机械及电喷系统其它件磨损而引起空燃比的误差。可以说是电喷系统中唯一有“智能”的传感器。

主氧传感器包括一根加热氧化锆元件的热棒,加热棒受(ECU)电脑控制,当空气进量小(排气温度低)电流流向加热棒加热传感器,使能精确检测氧气浓度。

在试管状态化锆元素(ZRO2)的内外两侧,设置有白金电极,为了保护白金电极,用陶瓷包覆电机外侧,内侧输入氧浓度高于大气,外侧输入的氧浓度低于汽车排出气体浓度。

应当指出用三元催化器后,必须使用无铅汽油,否则三元催化器和氧传感器会很快失效。再注意,氧传感器在油门稳定,配制标准混合时较为重要的作用,而在频繁加浓或变稀混合时,(ECU)电脑将忽略氧传感器的信息,氧传感器就不能起作用。

马自达cx-5三元催化器亮故障灯怎么办

一、何为三元催化?

发动机尾气中含有一氧化碳(C0)、碳氢化合物(HC)和氮氧化合物(NOx)等有害气体,三元催化转换器就是一种能将这三种有害气体转化为无害物质的转化装置。三元催化转换器安装在排气管道中,外形类似消声器。其外 筒用双层不锈钢板制成,夹层中装有绝热材料——石棉纤维毡,钢筒内是纵向有密集蜂窝状小孔的耐高温陶瓷载体(也有其他形 状,如球体、多棱体、网状隔板 等),其表面喷涂一层极薄的铂、铑、钯活性催化层作为净化剂(也称为催化剂)。

二、工作原理

发动机废气通过排气管排出时,由于三元催化转换器中净化剂的催 化作用,C0、HC和NOx的活性增强,从而进行氧化-还原反应,其中,C0在高温下氧化成无色、无毒的C02,HC化合物在高温下氧化成H20和C02, NOx还原成N2 (氮气)和02 (氧 气),这样就使发动机的废气排放得到净化。

三、"三元催化器"堵塞堵塞故障表现

1、第一阶段为轻微堵塞阶段。此阶段化学络合物吸附在催化剂表面上。只表现为尾气净化功能降低。尾气排放超标。

2、第二阶段为中度堵塞阶段:化学络合物已在催化剂表面累积到一定程度,此阶段排气背压升高。油耗增加、动力下降

3、第三阶段为严重堵塞阶段。由于堵塞严重,"三元催化器"工作温度升高。在三元催化器前端形成高温烧结堵塞。

4、高温烧结堵塞。高温烧结堵塞又分为两种:一种为金属烧结堵塞。一种为积碳烧结结焦堵塞。它是由燃油中是否使用含铅、含锰抗爆剂而决定,此阶段表现为动力严重下降,经常熄火,严重时排气管烧红,甚至造成车辆自燃。

四、检测判断三元催化系统的堵塞方法:

于三元催化转换器受本身的工作环境十分恶劣以及其转化性能特点的影响,在使用过程中也会有各种不同故障产生。例如,由于三元催化转换器堵塞造成的发动机动力下降、熄火或启动困难及尾气超标等现象,很可能干扰我们的故障判断。

1.检查三元催化器的前后氧传感器电压是否一致。如果一致,说明三元催化器损坏,也就是堵塞了或者因为发动机失火把三元烧了。

2.把手伸到排气管处,看能否感觉到气流,如感觉不到,说明堵塞。

3.摘下空气滤清器。 原地急踩油门。看时候从空滤处往外冒黑烟。

4.感温三元催化器的前后温差来判断是否堵塞。

5.试车时达不到最高车速,加速不良。

五、堵塞的原因

1、汽油:汽油含硫量高容易在三元催化器形成化学络合物造成堵塞。油质差,胶质多汽油容易造成三元催化器堵塞。使用含铅或含锰抗爆剂汽油容易造成三元催化器堵塞尽管我国已严禁使用有铅汽油 。但有些地区汽油在运输贮存过程中铅污染严重。些小炼油厂为了降低成本,仍在违法使用含铅抗爆剂。含锰抗爆剂在发达国家已禁止使用,但我国大部分地区仍在使用)。使用乙醇汽油容易造成三元催化器堵塞,乙醇汽油容易在燃烧室形成积碳,同时乙醇汽油对进气系统、燃烧系统胶质积碳有冲洗作用,冲洗下来的胶质积碳很容易在三元催化器形成堵塞。

2、机油:长期使用含硫、磷抗氧剂的机油容易造成三元催化器堵塞。

3、道路:由于汽车在加速、减速状况下产生不完全燃烧物最多。所以长期在拥堵道路上行驶容易造成三元催化器堵塞。

4、"喷油嘴、进气道免拆清洗养护":由于在清洗过程中会冲洗下来大量胶质积碳。所以很容易造成三元催化器堵塞,这也是有些车辆在进行"喷油嘴、进气道免拆清洗养护"后油耗增加的原因。

5、涡轮增压:带涡轮增压的车辆容易发生三元催化器堵塞。这主要是由于驾驶员不正确操作造成的。"三元催化器"堵塞是逐步形成的,堵塞的生成是可逆的,堵塞可通过化学过程如氧化和气化而减少,也可以通过物理过程如解吸和挥发组分、气相组分蒸发而减少。

六、解决办法

"三元催化器"堵塞是一个很普遍的问题,特别是道路拥堵的城市。 燃油油质差的地区,这个问题也很突出。"三元催化器"堵塞不仅严重造成车辆油耗增加,动力下降,尾气超标, 更严重的能让排气管烧红,造成车辆自燃。长期以来,汽修厂对于"三元催化器"堵塞没有有效的预防手段。也没有有效的治理手段,对于堵塞的"三元催化器"。只有取更换的方法。三元催化器价格要看带不带排气管,不带排气管催化器一般正规价是800-1200出厂价,但是4S店看到要加钱,如果正规4S店大概在2000+。

2018年下半年,长安马自达昂克赛拉投诉量频现异动, 11月份的车型排名更是升至第12位,投诉量创本年度新高。据车质诉数据显示,昂克赛拉的投诉集中在2017款车型中,主要投诉问题为“发动机故障灯亮”。目前,长安马自达4S店统一口径,否认车辆存在产品质量问题,并将责任归咎于国内燃油油品油质而不予质保。需自费800元清洗喷油嘴的处理办法,更是引起广大昂科塞拉车主的强烈不满。

四年后“发动机故障灯亮”问题再现 主角换为2017款车型

据悉,早在2014年,原国家质检总局就曾发布召回公告,对2014年4月1日至2014年7月24日期间生产的4331辆长安马自达昂克赛拉1.5L车型进行召回。原因为点火线圈在高温等特殊工况下,可能会进入保护模式,发动机某缸无法正常点火,导致“发动机故障灯亮”且发动机出现抖动。长安马自达将免费更换改进后的点火线圈并更新PCM程序,以消除安全隐患。召回的目的是为了消除缺陷,但让人意外的是,4年后,“发动机故障灯亮”的问题再次大面积出现在了昂克赛拉上面。

据车质网数据显示,2018年1-11月共接到有关长安马自达昂克赛拉“发动机故障灯亮”投诉50余宗,其中2017款车型投诉占比超过七成。来自辽宁的车主杨先生向车质网反映,其购买的2017款昂克赛拉在用车不到一年内,共出现7次“发动机故障灯亮”现象。其中两次报警间隔最短的仅200公里,且期间伴随油耗增高、点火延迟等问题。而每次到4S店反映问题时,得到的答案均为油品油质不佳,可能导致喷油嘴堵塞。车主并不认同4S店给出的解释及处理方式,但加95号燃油、添加燃油宝、拉高速这些方案车主都试过,均并没有解决实际问题。有其他车主表示,自己一直在中石油、中石化加油站加油,且保留有微信和支付宝付款记录。甚至有车主在出现问题后一直加95号汽油、98号汽油,但“发动机故障灯亮”问题依旧会出现。对此,大部分车主认为这样的车驾乘体验感极差,违背了当初选择昂克赛拉这款车的初衷。

除车质网接到相关投诉外,在昂克赛拉贴吧、汽车论坛中同样发现大量相关内容。如上图所示,有网友在网上查找相关帖子,发现中招的车友并不少。2018年10月20日,车主们自发成立“故障灯亮”维权群,短短七天就已发展到近百位成员,大家一致认为厂家咬定油品问题是在回避可能存在的产品缺陷。

清洗一次花800元!竟成售后新“赢利点”

据部分车主反馈,2017款昂克赛拉出现“发动机故障灯亮”问题后,4S店给出的说法均为喷油嘴堵塞,并一口咬定是油品不好引起,不在质保范围内。对此4S店给出两个处理方式:1、加燃油添加剂后拉高速,价格为89元1瓶,总共要加2瓶,但售后人员称此方式不保证能消除故障;2、清洗喷油嘴,报价在800元左右(含工时费500元)。由于大部分相关车辆均在不足一年内就出现了类似问题,厂家及4S店给出的解决办法无法令车主信服。

数据显示,2017款长安马自达昂克赛拉出现“发动机故障灯亮”问题,的确多集中在购买1年内/行驶里程20,000km以内的车辆中(上图)。更为令人意外的是,行驶里程在10,000km以内竟占到45%,其中不乏1000-2000km就出现问题的车辆。如果每次都需要清洗喷油嘴,这无疑将大大增加车主日常用车成本。

长安马自达服务保养项目表

如上图所示,车质网查询长安马自达后发现,在其长安马自达创驰蓝天车型保养间隔一览表中,并未发现有关清洗喷油嘴事宜的相关规定。其中,只有关于每隔10,000km添加一次燃油添加剂的提示。由此可见,如此高频的清洗喷油嘴业务,并非日常保养的常规动作,反而“因祸得福”,成为了长安马自达售后服务的重要“盈利点”(物料成本低,主要为工时费)。这也很好的解释了为何在出现“发动机故障灯亮”问题后,目前4S店都理直气壮地将问题归结于油品油质,让车主去自费解决了。

国内油品究竟有多差?厂家自己打脸

那么喷油嘴堵塞难道真的是油品油质差所致?国内外油品到底有多大差异?实际上,据车质网了解,在实施国四排放标准之前,由于排放/燃油标准本来就很低,再加上监管缺乏,那时候国内的油品真是比较差,也导致了很多合资及进口车“水土不服”。然而随着国内燃油标准伴随着排放标准的一起实施,至今已经从国一升级到了国五,且部分地区会提前实施国六排放/燃油标准。这意味着,我国的燃油标准基本达到了、某些指标甚至超过了美国和欧洲的现行标准。所以,只要在正规加油站加注符合说明书要求的燃油,都可以满足车辆正常使用。

稍具讽刺意义的是,在此前的媒体报道中,马自达官方表示创驰蓝天发动机为适应国内的油品,在引入国内时已将压缩比调整为13:1,较日本本土有所下调。但如今当发动机出现故障后,厂家又再次将问题归结于油品油质问题,无疑是在打自己的脸。来自四川的车主覃先生认为,让车主自费清洗存在不合理性,如果4S店将抽油样本拿去权威机构检测,证实为油品问题的话,可以拿检测报告去找中石油、中石化追究责任。但如果不能证明,则要求4S店为车主免费清洗喷油嘴,履行汽车三包的义务和责任,不要再拿油品问题推卸责任。

喷油嘴频繁清洗或增加损坏几率

实际上,积碳是一个老生常谈的问题。汽车在行驶一段时间后,汽油本身的杂质、胶状及粘稠物,加上燃烧不充分时产生的积碳,通过日积月累的堆积,都会在喷油嘴表面形成积碳(如上图所示)。尤其是直喷车喷油嘴直接安置在燃烧室内,长期在1000摄氏度以上的高温高压环境下更易产生。据了解,目前其它汽车品牌4S店也会定期建议车主做清洗套餐服务,但仅仅为可选择的附加服务项目,目的是为了改善发动机的燃烧工况。相比之下,2017款昂克赛拉车主在车辆产生故障问题后被动接受清洗服务,其性质则截然不同。

第一代创驰蓝天发动机

用高压用泵将喷油压力提升至206bar

某专业从事汽车养护业务的企业曾发表相关公告,认为目前国内维修厂还不具备对高精密喷油嘴和油泵做深度养护的能力。但为了获得这一售后赢利点,目前国内很多维修厂都取各种替代方式(例如加燃油添加剂、清洗套餐等),不过这样做对于直喷发动机而言完全没有必要。从技术层面来说,自然吸气发动机喷油压力一般为2.5-3.5bar,而直喷油管压力则很高,达到了120-200bar(马自达创驰蓝天发动机喷油压力为206bar)。在如此高的压力作用下,喷油嘴孔道很难存在堵塞现象,而市面上所谓对喷油嘴的清洗,也只是简单的清洁外表积碳。并且在非专业设备操作的前提下,还容易造成喷油嘴的损坏。

据多年从事汽修行业的人士介绍,为确保喷油嘴拥有一个良好的工况,一般情况下建议车主每隔30,000km左右清洗一次喷油嘴,如果用车条件较好,也可以40,000-60,000km左右清洗一次。由此可见,目前针对2017款昂克赛拉自费清洗喷油嘴的做法,治标不治本,长此以往可能反而会增加损坏几率,给车主带来更大损失。

混合气过稀究竟谁之过 亟待厂家发声

投诉信息显示,有车主反映出现“发动机故障灯亮”问题后,到4S店电脑检测读取故障码为P0171,即混合气过稀问题。资料显示,P0171故障码一般情况下是由氧传感器、燃油修正值等信号数据异常触发的。如果氧传感器信号电压长时间处于低电压阶段,燃油修正值超出系统修正、调整的可控范围,系统就会存储该故障码。

从目前掌握的汽车故障维修资料来看,混合气过稀并不单纯为喷油嘴堵塞引起。进气歧管泄漏、PCV系统泄漏、氧传感器故障、油泵供油不足、燃油压力调节器故障、发动机转速传感器故障、电子控制模块(PCM或ECM)等故障问题,都会造成发动机混合气过稀,使车辆出现“发动机故障灯亮”现象。这可能证明,17款昂克赛拉发动机故障灯亮的锅让喷油嘴来背,理由并不充分。

截至发稿,长安马自达尚未对故障原因发布官方声明,至于2017款昂克赛拉集中出现“发动机故障灯亮”的原因,究竟是油品责任更大还是产品质量瑕疵是主因,望长安马自达尽快查明真相,及时消除车主的种种疑虑与不满。对此,车主网也将持续关注相关投诉趋势及的后续进展。