1.用微波炉变压器做特斯拉线圈求高手帮忙

2.第一次做特斯拉线圈,单管自激,4T+10T驱动高压包。问TC电路中的电容该用哪种?

3.特斯拉线圈,的原理和结构?

4.我已经做了一个小型的特斯拉线圈(SGTC),可以拉电弧,可以说成功了吧,电弧有10厘米左右.但好细

5.电路深度解惑,电路,电学.特斯拉线圈

特斯拉线圈计算_特斯拉线圈计算器

1特斯拉线圈本身就是很高的电压 而且是特别高的那种

2特斯拉线圈你可以理解成在整个电路回路中的电阻很大,所以尽管电压很高,但是电流很小,对人没有危险。

3在没有专业人士的指导下 自制特斯拉线圈还是很危险的

原理可以基本说成是让电容器来回放电 空气作为电介质

如果要做穿过人体或其他介质的实验用 就需计算好电阻 在击穿电压下 控制好人体和空气共同电阻的大小 使电流不至于过大

另外 提醒一下 如果你真的打算做的 这个线圈在放电时候的噪音非常大 好像1000架飞机一起起飞那种 提前做好隔音准备 否则耳膜一定会损坏的

用微波炉变压器做特斯拉线圈求高手帮忙

SSTC,固态TC,主要区别是把SGTC的打火器和换成了电子谐震电路,噪音小,寿命长,但电弧不如SGTC壮观

固态特斯拉线圈

简介

特斯拉线圈,是塞尔维亚籍科学家尼古拉·特斯拉于1891年发明,用来演示无线输电以及高频高压交流电特性的装置。特斯拉生活的年代没有半导体晶体管,所以他发明的线圈是比较落后的SGTC(火花间隙特斯拉线圈,Spark Gap Tesla Coil),效率较低,且噪音巨大。现代的爱好者们根据特斯拉线圈的本质的原理(LC振荡),发明了固态特斯拉线圈(Solid State Tesla Coil,简称SSTC)。固态特斯拉线圈有效率高、噪音小、寿命长等优点,而且由于固态特斯拉线圈的结构特点,它可以通过一个电路输入音频,使特斯拉线圈的电弧直接推动空气发声,这使得特斯拉线圈成为了一件艺术品。而后来的人在SSTC的基础上,发明了DRSSTC(双谐振固态特斯拉线圈,Double Resonance Solid State Tesla Coil)。它给初级线圈串联了MMC(谐振电容),和初级线圈的电流构成了共振,初级线圈内部的电流更大,使电弧效果进大幅提高。

早期的SGTC

SGTC通过一个打火器来控制电路,它的功能相当于一个开关。但是,由于本身结构的原因,打火器在工作时发热比较严重,甚至有时会由于温度过高融化。

SGTC的工作过程:

SGTC电路

首先,交流电经过升压变压器升至2000V以上(可以击穿空气),然后经过由四个(或四组)高压二极管组成的全波整流桥,给主电容(C1)充电。打火器是由两个光滑表面构成的,它们之间有几毫米的间距,具体的间距要由高压输出端电压决定。当主电容两个极板之间的电势差达到一定程度时,会击穿打火器处的空气,和初级线圈(L1,一个电感)构成一个LC振荡回路。这时,由于LC振荡,会产生一定频率的高频电磁波,通常在100kHz到1.5MHz之间。放电顶端(C2)是一个有一定表面积且导电的光滑物体,它和地面形成了一个“对地等效电容”,对地等效电容和次级线圈(L2,一个电感)也会形成一个LC振荡回路。当初级回路和次级回路的LC振荡频率相等时,在打火器打通的时候,初级线圈发出的电磁波的大部分会被次级的LC振荡回路吸收。从理论上讲,放电顶端和地面的电势差是无限大的,因此在次级线圈的回路里面会产生高压小电流的高频交流电(频率和LC振荡频率一致),此时放电顶端会和附近接地的物体放出一道电弧。

特斯拉线圈需要达到“谐振”的状态,才能达到最大的功率。所谓谐振,就是初级部分LC振荡频率和次级部分LC振荡频率一致。由于LC振荡频率仅仅由电容容量和电感的电感量决定,且在公式里它们是相乘的关系,进行谐振计算的公式可以简化为L1C1=L2C2。其中,L1为初级线圈电感量,C1为主电容容量,L2为次级线圈电感量,C2为顶端对地等效电容容量。

SGTC本身存在寿命短、效率低、噪音大的问题,已经无法满足众多爱好者的需要。于是,固态特斯拉线圈应运而生。

固态特斯拉线圈

概况

现代的爱好者们,根据特斯拉线圈由LC振荡接收能量的原理,设计出了极具现代感的SSTC。早期的SSTC玩家大多数都是外国人。

彼得·特伦的SSTC

固态特斯拉线圈,是由芯片振荡代替SGTC的LC振荡并由放大器放大功率后驱动次级线圈部分的特斯拉线圈。它的原理依旧是LC振荡,只是发射端作了改动。

固态特斯拉线圈还可以通过音频来控制,使电路推动空气发声。

固态特斯拉线圈是通过芯片的振荡来产生高频交流电的。由于固态特斯拉线圈的工作比较好控制,固态特斯拉线圈有两种:定频和追频。定频,即初级部分只能发射出一个固定的频率;而追频,就是初级部分会根据次级部分的LC振荡频率自动调整发射频率,从而达到完美的谐振。目前,追频SSTC已经成为固态特斯拉线圈的主流。

定频

最简单的SSTC电路

这是一张由555定时器芯片控制的定频SSTC电路图,来源不详(根据推测,有可能是贴吧的 Tesla粉丝 的作品)。

第一次做特斯拉线圈,单管自激,4T+10T驱动高压包。问TC电路中的电容该用哪种?

串联电压应该有4200V,6并10串这样吧,我当年也是这样,不过我初级只用了3圈,这个得看,每个不一样的,调谐振可以瞎调,

初级把一头固定,另一头完成圆圈卡在初级上想,将圆圈(A)像箭头方向慢慢移动,记录电弧最长的圈数(设为C),然后固定,再把长的剪断,就这么调,调试的时候不要通电,移动后再通,并且电容要放点,被电一下够你哭的了,希望你TC早日成功!我也做过用微波炉变压器做过的TC,有些经验,可以帮助你

特斯拉线圈,的原理和结构?

整个制作我们以变压器功率为1000w的中型特斯拉线圈为设计标准。(放电距离:>=120cm)(备注:特斯拉线圈的放电距离和功率成正比)

主要材料及大概成本:

1:高压变压器?1000W?输入220V?输出?10KV

2:大量无极电容?如用0.047uf?1000v~(1600v-)的cbb电容需要准备100只左右,有大容量的高压电容请自己换算

3:直径13厘米长1米的聚氯乙烯管(壁厚0.6-1厘米),pvc管材也将就,厚0.8厘米的绝缘板材(不能是木头!最好塑料)大约2.5平米,厚0.5厘米的绝缘板材(非木!)大约1.5平米,这些都可在家庭装饰城(就是那些买涂料,板材,工具等的那种大市场里)买到

4:导线,多芯铜导线,1000v50A大约6米;10kv1A导线3米

5:耐压漆包线?内径0.5mm?900米长

6:直径0.8厘米的铜管(壁厚1mm以上)长8米,直径3厘米厚>1mm长1米的铜管可在汽车配件或五金等地买到

7:电手钻,螺丝刀,手锯,钳子等工具,普通螺丝,塑料螺丝,环氧树脂胶,钢尺等

8:用于燃气热水器的排气管(金属制作,可弯曲,直径在10厘米以上)制作后期计算得到长度.

你看够吗

我已经做了一个小型的特斯拉线圈(SGTC),可以拉电弧,可以说成功了吧,电弧有10厘米左右.但好细

"特斯拉线圈"它是由一个感应圈、变压器、打火器、两个电容器和一个初级线圈仅几圈的互感器组成。原理是使用变压器使普通电压升压,然后经由两极线圈,从放电终端放电的设备。通俗一点说,它是一个人工闪电制造器。放电时,未打火时能量由变压器传递到电容阵;当电容阵充电完毕,两极电压达到击穿打火器中的缝隙的电压时,打火器打火。此时电容阵与主线圈形成回路,完成LC振荡进,而将能量传递到次级线圈。这种装置可以产生频率很高的高压电流,但有极高危险。特斯拉线圈的线路和原理都非常简单,但要将它调整到与环境完美的共振很不容易,特斯拉就是特别擅长这项技艺的人。

尼古拉·特斯拉是一位伟大的科学家。这位绝世天才的伟明家现今几乎被人们遗忘。尼古拉·特斯拉其中之一发明就是特斯拉线圈 ,原理为把一个线圈连接在电源上,作为发射器传输能量,另一个线圈连着灯泡,作为能量接收器。通电后,发射器能够以10兆赫兹的频率振动,另一个线圈连着的灯泡将被点亮。

电路深度解惑,电路,电学.特斯拉线圈

你这个状况可能没有达到谐振,也就是可能还是感应圈,算不上TC,做SGTC需要调谐,另外LS说的生命危险基本不存在,TC的高压电电压虽高,但电流小的可怜。想要喷弧接地接地一定要可靠,不然不会喷的,谐振的不好也会稍微喷点,重点还是调谐振,初级要比计算时长,一端不固定,慢慢缩短,喷弧/拉弧最长时就是谐振了。喷弧的另一个条件就是有放电尖端,没尖端基本不能喷弧,尖端在金属球上面随便放根铁丝就行。

PS:SGTC电容寿命不长,注意安全。

只给出实物图是不行的,因为我们难以根据实物图看清楚电路的结构。

请给出具体的电路图以及主要元件的参数,比如线圈是如何绕制的、初次级匝数、是否有铁芯(磁芯)?这样才好帮你把关。

而且实话实说,你这一堆东西接的乱七八糟的,看着头疼啊。为什么搞这么多鳄鱼夹呢?现在网上随便拍几块洞洞板,用电烙铁焊一下很简单的。像你这样接电路?,不仅乱、容易导致短路或接触不良,还会因分布参数太大影响电路的高频稳定性

你提供的电路确实不算完整,因此看起来令人困惑,后来仔细看了一下,看懂了。下面评价一下这个电路,如图:

这是你的原图,红色部分是我后加的。由于看不清楚你拍照的东西,因此无法确定3匝的原线圈和400匝的副线圈是否绕制在铁氧体磁芯上,照片看起来没有磁芯,貌似就是绕在一根PVC管子上的。如果没有磁芯的话,原副线圈之间耦合系数很低,原线圈的能量只有很少一部分可以耦合到副线圈,副线圈产生的感应电压必然很小,无法拉出电弧就毫不奇怪了

你这个电路,正反馈是利用高压副线圈的电流提供的,要想起振,必须让副线圈拉出电弧(或短路副线圈,再或者副线圈放电针之间加上一定的负载电阻),让副线圈产生电流,正反馈信号才会出现,才能起振。如果副线圈开路、拉不出电弧的话,正反馈信号将缺失,振荡将停止。且,副线圈提供的正反馈电流值不确定(等于高压放电电流),因此振荡是不稳定的。

还有,无论2N2222A还是2SC8050,极限电流很小、耐压都较低,用于此类电路,能提供的高压放电功率不大,且容易击穿三极管。

下面是改进的电路:

1、三极管用高反压大电流开关管MJE13003或MJE13005(多用于几十瓦以上的节能灯镇流器,可找一个闲置的镇流器拆得),耐压400V、极限电流3~5A,可提供足够的功率,无需担心损坏。

2、增加了反馈绕组(2匝)专门提供正反馈,通过51Ω限流电阻,原线圈中脉冲电流峰值可达到3A。由于不再利用高压副线圈提供负反馈,因此只要接通电路就能起振,振荡稳定可靠。

3、三组线圈绕制在高频铁氧体磁芯上,可用EE型或EI型磁芯,横截面积不小于10平方毫米(可从几十瓦的节能灯镇流器上拆得)。原线圈可以考虑用直径0.5mm左右的漆包线4~6根并绕3匝,以降低趋肤效应;高压副线圈用直径0.2mm左右的漆包线绕制1000匝;反馈绕组对线径无特殊要求,绕制2匝即可。如下图,几个线圈均绕制在磁芯中柱上。

由于变压器工作在反激模式,因此为了 避免磁芯饱和,组装磁芯时要留有一定的气隙,可以在组装磁芯时,在两部分磁芯之间加上一层0.5~1mm后的纸板(示意图中的蓝色部分)。如果磁芯已经预留气隙,此步骤可省略。

由于有高压,为安全起见,原副线圈之间要确保良好绝缘(可用薄一些的绝缘胶带隔离),绕好后烘干浸漆处理更好,副线圈高压输出的两个端子最好用绝缘套管引出

注意反馈线圈的同名端(图中线圈用红点标出的为同名端),如果接反了不会起振,对调即可。调试时,可适当调整反馈限流电阻,令其在33Ω~82Ω之间改变,可改变振荡强度和输出高压的强度。

最后,建议购买洞洞板和电烙铁、焊锡、助焊剂,用洞洞板搭建电路,不要像你原来那样用鳄鱼夹。类似这种:

祝你成功。

=======================================================

最后一次补充回答:

1、如果三极管是场效应管、IGBT之类的压控元件,反馈信号是电压没问题,但考虑到场效应管存在较大输入电容,如果是高频振荡,只有电压是不够的,还要有足够的电流,否则一样会驱动不足。你这个电路用的双极型三极管,是电流控制型元件,正反馈信号归根结底必须是电流,而且电流还要足够大才行。

2、网上有很多都是骗人的,表面演示的是一个电路,背后是另一个电路也未可知。

3、加了磁芯之后,和空心线圈相比,电感量增加是当然的,但可以通过减少线圈匝数来达到合理的电感量,谁说频率必然下降?按照你这个原始电路,如果不加磁芯,可以计算出来原线圈电感量只有可怜的微亨级,微亨级的电感一般用于数十兆赫以上的振荡电路,而2SC8050三极管共发射极截止频率为150MHz,工作在几十兆赫时,其高频β值必然降低到只有几倍,这得需要多大的正反馈电流才能满足振荡?如果将振荡频率降低到几百kHz,β值倒是有保障了,但这么低的频率和微亨级的电感量能匹配吗?

毕竟,这个电路形成的是方波振荡,夸大一些,初级线圈电感量算它5微亨(实际计算结果远远不到2μH,如果不信,请百度空心线圈电感计算方法自行验证,或用电感仪测量)、100kHz频率、占空比0.5计算好了,开关管饱和导通时间长度为1÷200,000x0.5=5μs,在此期间,8050三极管的脉冲电流峰值为Icm=12V÷0.000005x0.000005=12A,这远远大于8050的能承受的最大脉冲电流!你告诉我无需中、大功率管?

4、即使用空心线圈,为了减小漏磁(漏感)、增大耦合系数,初次级线圈也应该绕在一起、尽量接近,而不是像你这样在一根PVC管子上同轴相距好几厘米这么远的距离绕制。

第一种,是我所说的空心线圈紧密耦合的绕法,虽然仍有漏磁但毕竟好得多。第二种就是你按照资料(或者所谓抖音)上介绍的松散耦合的绕法,红色初级线圈产生的磁力线只有少量能穿越蓝色次级线圈,漏磁巨大。超乎你预料的是,无论频率高低,螺线管产生的磁场都是和条形磁铁周围磁场相一致(或者说高度相似),在空气作为导磁介质的情况下,第二种绕法,红色线圈产生的磁力线不可能大部分穿越蓝色线圈。你所说的频率高了就没问题,完全是一厢情愿

第三种是加了磁芯的,哪怕不是闭合磁芯而是一根贯穿的磁棒,因为铁氧体高频磁棒的导磁率远高于空气,因此红色线圈产生的磁力线将只有极少数(不足千分之一)从空气中侧漏,几乎全部都会利用磁棒穿越蓝色线圈,属于深度耦合。

请重新温习一下中学物理关于条形磁铁和螺线管磁场分布的知识:

来来来,你告诉我,下列知识,哪一个不是所谓的电子专业人士应该烂熟于心的:

1、三极管β值和工作频率的乘积,等于三极管共发射极极限工作频率。实际工作频率越高,β值越小。所谓β=250之类的说法,仅仅针对于低频以及直流工作环境。

2、空心电感计算公式;方波周期、占空比以及高低电平持续时间的计算;电感工作在开关电路中峰值电流的计算公式 Im=U△t/L。

3、空心螺线管的磁场和条形磁铁磁场的相似性、周边磁感线的分布。

4、工作在正反馈开关(斩波)状态的三极管驱动电流值的设计------βIb>Icm。

5、此类电路的初级线圈电感量的取值原则------既要满足工作频率下峰值电流要求,也要能提供足够功率输送。如何平衡电感量、工作频率、峰值电流和输送功率的取值?

6、此类电路的变压器(无论有无磁芯,初次级间存在一定的互感就可视为变压器),有正激和反激两类工作模式,正常情况下应按反激型来设计。而工作模式还有连续模式和断续模式两种。不要告诉我,一个所谓的专业人士,连正激和反激、连续模式和断续模式都没听说过。。。。。。

7、高频电路,分布参数对电路工作的状态有巨大影响,对于微亨级、兆赫级振荡,一堆数厘米长的电线和鳄鱼夹带来的分布参数,对振荡的稳定性有没有影响?影响有多大?

8、多大的放电气隙需要多高的击穿电压?设拉弧空气间隙为1mm(再大的间隙此类电路怕是产生不了足够高的电压),一般空气干燥的情况下,需要3kV的击穿电压,你这个原始设计能否提供如此高的电压,有过计算论证吗?如果拉弧气隙远超1mm,需要多高的电压,想过没有?就按照1mm计算好了,空载3kV击穿后电压跌落至500V、电弧电流按照10mA算,放电功率高达5W,而原始电路设计的松散耦合状态,能量传输效率必然很低,初级消耗的电功率必然远大于5W,8050吃得消?12A1A的电源吃得消?还有,就算能提供空载3kV的输出,次级线圈的匝数需要多少?别人用400匝,你就用400匝?此时8050将承受多高的尖峰电压?其25V的BVceo吃得消?

9、找一个电蚊拍,拆开看看人家的电路是怎样设计的,和你这个所谓的“特斯拉线圈”无论原理还是用途,本质上有何区别?------一个用来电蚊蝇有实用价值,一个无非为了满足好奇心或者而已。

10、高频开关电源、传统CRT电视机高压包的变压器,都是有磁芯的。不用磁芯仅仅依靠高频就能实现紧密耦合?早年全世界数百亿台CRT显示器和数千亿开关电源,如果都省略磁芯,会节约多少成本?工程师都是傻子,不懂得省略磁芯?

11、工作在开关状态的场效应管,虽然是电压驱动,但由于输入电容Cgs的存在,也是需要一定电流的,否则会导致开关不良功耗剧增。驱动电流如何计算?

12、趋肤效应听说过?怎么降低这种效应的影响?MJE13005用过?EI磁性功率和磁芯横截面积的关系懂?原副线圈间耦合系数这个概念听说过?耦合系数的定义?

……

……

你告诉我,能瞬间想得到、说出上述这么多专业知识的,真业余吗?

看得出,你是专业的,专业人士用一大堆鳄鱼夹弄了几个月不成功?

当一个如此简单的电路鼓捣几个月都不成功,要不要怀疑一下原始设计的合理性?要不要反思一下自己制作中的不足和错误?要不要进行理论验证和计算分析,要不要改进一下?还是牛角尖一直钻下去?要不要虚心听听别人的意见然后尝试一下?

不要觉得自己在网上回答过几百上千道关于电子类的题目就觉得自己专业了。电子技术包罗万象,搞数电的不见得模电厉害,模电厉害的可能数电一知半解,理论教学很牛逼的实践能力差的人有很多,自认动手能力强的人很多理论知识很匮乏。任何时候都要谦虚好学、热爱钻研,而非钻牛角尖认死理不懂得变通。