1.空气动力汽车是真是

2.你知道汽车上有哪些是空气动力学的设计?

3.汽车的空气动力学是怎么回事,普通家用车有必要考虑吗?

4.如何逆风“飞行”?340km h的法拉利F8,拥有“逆天”空气动力学

5.空气动力大巴车的原理是什么?

6.关于空气动力学在汽车改装上存在的意义

空气动力汽车_空气动力汽车的原理

汽车上的空气动力学原理是:在低速行驶或者无风的情况下,汽车与空气间的相互作用力通常可以忽略不计。但在高速行驶或遇到大风天时,空气阻力将对车辆的加速性能、操控性能和燃油效能产生巨大影响。

根据空气动力原理设计的汽车能够获得更好的加速性能和燃油效能,因为引擎不需要产生太多能量帮助车辆穿越气墙。工程师们已经设计出数种方法。

汽车空气动力学空气动力学的一个分支,研究汽车与周围空气在相对运动时两者之间相互作用力的关系及运动规律的学科,它属于流体力学的一个重要部分,主要研究汽车、火车等车辆的空气动力性能、行驶稳定性、操纵性和气动噪声等问题。

前向下压力是指汽车车头加装大包围等附带装置,引导气流从而得到向下的气流压力,后压力一般是指尾翼所带来高速行驶中,引发的气流向下压力。

汽车动力学中的前下压力是指汽车向前运动时空气作用于汽车向下的阻力。当汽车向前运动时空气从汽车顶棚向车尾运动的时候就会形成一股向下的压力,这就是为什么要加扰流板使的这股向下的压力变成向上的升力,从而有效减轻汽车负荷。

空气动力汽车是真是

每日汽车知识:我们一起来了解汽车的空气动力学

大家好,这里是每日汽车知识。今天这篇文章我来跟大家说一说汽车上的空气动力学的设计。

可能很多朋友会有这样的一种疑惑,为什么有一些汽车的外形设计得特别的难看而不能设计成像我们想象中的那么帅气。实际上汽车的外形它除了要考虑我们汽车整体的各个部件的布置,它还要考虑到的就是我们今天要说的空气动力学。那么通过空气动力的测试,我们可以不断的修改汽车的外观造型,降低汽车的风阻系数,减小汽车行驶中它所遇到的空气阻力,从而可以达到节省燃油的一种目。根据空气动力学专家他们的数据表明,每当我们减少10%的空气阻力,那么它就会降低5%以上的燃油消耗,所以说空气动力学对于我们整个汽车来讲是非常重要的。那么空气动力学在汽车上的另外一个重要的应用就是提高我们汽车的行驶稳定性。一辆汽车在行驶过程当中,他会相对静止的空气产生不可避免的冲击。那么空气因此会向四周流动,这就是为什么说当我们一辆汽车飞驰而过以后,地上的纸张或者是树叶啊会被卷起。那么此外,车底的气流也会对我们车头和发动机舱内产生一股向上的升力,也就是相当于将我们的车轻轻的向上抬这样的一种力量。所以他会削弱我们车轮对于地面的抓地力,进而影响汽车的行驶稳定性和操纵表现。

第二个问题给大家介绍一下风洞实验。可能有些车友听说过汽车的风洞实验,实际上世界上一流的汽车公司在进行汽车开发时,都要先把车制成1比2或1比1的汽车泥膜,然后在风洞中做试验测试。测试我们的汽车模型在高速流动的空气中它的性能表现,然后再对我们的汽车的外形不断的修改和完善。汽车风洞就是用来研究汽车空气动力学的一种大型的实验设备,是用来产生人造气流的一个管道我们所熟悉的宝马公司它是有两个风洞设备的,一个是用来测试1比2的汽车模型一个是用来测试1比1的汽车模型。然后根据实验的情况对车身各部分进行细节上的修改,使得我们的风阻系数达到设计要求,最后汽车的外形才会确定。目前世界上其它汽车风洞还不多,主要集中在像日本、美国、德国、法国、意大利等国的大型汽车公司当中。目前我国最大的风洞是在我们中国航空动力研究所,它的风洞实验室主要承担的还是航空航天方面的风洞实验。但也可以作为我们汽车和建筑物的风洞实验。

第三个问题想给大家来介绍一下风阻。顾名思义,风阻呢它就是风的阻力,也就相当于我们的空气阻力。静止的车是不会受到风阻的。当汽车行驶时,你将手伸到窗外,就会很容易感觉到风的阻力。有那么一股力量往后推动你的手,那么这股力量就是风阻了。一辆汽车能否顺利从研究发展到生产,它的油耗标准是非常重要的,而我们的风阻对油耗却有着相当大的影响。如果我们的车辆想要保持一定的速度,那么相对的它的发动机就要多烧一些汽油来增加力量,使它能与我们的风阻相抗衡。如果我们的外形设计不良,车身风阻系数较大,那么它的油耗自然就会升高,就会失去市场上的竞争力。而且根据实验测试表明,当一辆轿车它以80公里每小时的速度前进时,要有60%的油耗量是用来克服空气阻力的,所以空气阻力对于我们的油耗的影响是非常大的。

第四个问题给大家介绍一下风阻系数。可能大家在4S店买车的过程当中,经常会听到销售人员给我们讲他的车的风阻系数低至多少多少。那么风阻系数它是衡量一辆汽车受到的空气阻力大小的一个标准。风阻系数越小,说明它受到的空气阻力的影响也就越小。一般来讲,流线性越强的汽车,那么它的风阻系数就越小。我们一般车辆的风阻系数它是固定的,根据风阻系数,我们也可以计算出车辆在各个速度下所受到的空气阻力。一般来讲我们马路上看到的大多数的轿车,它的风阻系数是在0.3到0.51。那么流线性如果好的汽车比如跑车,那么它的分数的系数可能在0.28以下。甚至有一些特别的赛车,它可以达到0.15左右。

最后一个问题想给大家来说说我们怎样才能够降低我们的风阻系数。首先大家可能有这样的一个误区,并不是只有汽车的外观形状才会影响我们的空气阻力。汽车的底部啊车轮啊也会对我们的空气阻力受到一定的影响。宝马集团的空气动力学专家们,他们经过测试实验,他们得到数据,汽车的外观形状和车身比例对空气阻力影响只占40%。而车轮和车轮的空间对空气阻力的影响却达到惊人的30%而且宝马专家还做了一个现场的对比的测验。比方说一个正常的车辆,它的车轮外露在外面,那么它的风险系数呢是在0.28,而将车轮包围封闭以后,它的风阻系数立马就降到了0.18。所以说车轮和车轮所在的空间对于空气阻力也是有很大的影响的。另外就是车身底盘带来的风阻占20%,和空气进入我们车内的风阻占10%。所以从上面我们可以看出,我们如果想让一辆汽车拥有较小的风阻系数,主要要做到以下四个方面:第一我们汽车设计的外形要更加的流线型,更加的平滑第二,它的车轮不能太宽,而且车轮的空间不能太深。第三呢就是我们车身底盘的布局应该合理,它的排气管啊等部件一定要做得非常的平整,有利于让我们空气通过。第四就是我们车前部的进气孔的设计也应该合理。因为从我们车的前部进入到车内的空气不能太多,又不能太少,太多呢会增加我们的空气阻力,太少呢,又不利于我们发动机尽情的燃烧。所以呢,车前部的布局应该合理。

你知道汽车上有哪些是空气动力学的设计?

不是颠覆,也不是,只是夸大其词,充其量是“善意的误导”。

空气动力学在科学的范畴里是一门艰深的度量科学,一辆汽车在行使时,会对相对静止的空气造成不可避免的冲击,空气会因此向四周流动,而蹿入车底的气流便会被暂时困于车底的各个机械部件之中。

空气会被行使中的汽车拉动,所以当一辆汽车飞驰而过之后,地上的纸张和树叶会被卷起。此外,车底的气流会对车头和引擎舱内产生一股浮升力,削弱车轮对地面的下压力,影响汽车的操控表现。

另外,汽车的燃料在燃烧推动机械运转时已经消耗了一大部分动力,而当汽车高速粻矗纲匪蕺睹告色梗姬行使时,一部分动力也会被用做克服空气的阻力。所以,空气动力学对于汽车设计的意义不仅仅在于改善汽车的操控性,同时也是降低油耗的一个窍门。

2015年5月,央视新闻曾对该公司的这项产品进行过报道。当时,据空气动力车项目实验室主任马天宇介绍,该车运行的原理是:压缩气体经过加热后,得到了1244倍的膨胀压力,气体驱动发动机,继而驱动发电机,得到了很长的续航里程。

全国乘用车联合会秘书长崔东树在接受访时表示,这项技术性实用性并不好,续航里程有限,不具备量产的可能性。

从理论上看,空气动力汽车是可行的。但是这项技术成熟度太低,也没有产业链配套,市场还没有成形。”一位长安汽车动力研究院的工程师表示,与电动汽车、燃料电池汽车相比,空气动力汽车并没有优势,只是一个小众的偏门技术,未来应用希望比较渺茫。

空气动力汽车量产可能性很小

据了解,压缩空气的能量密度很低,还不足汽油的十分之一。这就意味着,如果要达到和汽油车同样的续航里程,空气动力汽车搭载的高压气罐容积至少是汽油箱的十倍。

实际上,法国工程师Gury Negre曾研发出一款空气动力车AirPod。这是一款重约700kg的小车,车上装有容量为300L的高压气罐,可供AirPod行驶120千米。要知道,一辆排量为1.3L的汽车油箱容积也只有50L~60L。

除了空气动力汽车,空气混合动力汽车量产也非常困难。在2013年日内瓦车展上,PSA集团曾展示了一台搭载Hybird Air空气混合动力系统的雪铁龙C3。PSA集团当时宣称,这套空气混合动力系统将会在2016年正式量产,但时至今日,PSA还未有相关量产车型上市。

汽车的空气动力学是怎么回事,普通家用车有必要考虑吗?

你知道汽车上有哪些是空气动力学的设计?

大家在用车的过程当中,油耗应该是大家最关注的指标之一。而汽车发动机的排量,汽车的质量对于油耗的影响我想大家都比较清楚。但是实际上汽车上有很多的空气动力学的设计,对于降低油耗同样有着很重要的作用。那么就来聊一聊空气动力学的设计。

一般我们是用空气阻力系数来衡量一个汽车的空气阻力大小的。而目前来讲,风阻系数最小的是雨滴,它的风阻系数在0.05左右。其实这个非常好理解,雨滴在下落的过程当中,它会被空气阻力塑造成阻力最小的一个形状。

因为如果不是阻力最小,雨滴在下落的过程,它还会继续变形,直到空气阻力变得很小。所以说早期一些汽车它的外形就很酷似水滴,但是实际上是设计者没有考虑到汽车车轮和行驶的系统。

因为如果加上车轮和行驶系统之后,整个水滴状的汽车,它的流程已经不是单纯的水滴外形了,所以它的空气动阻力还是很大的。

为了让大家更形象的理解汽车的空气动力学,举一个生活当中的例子,为什么高尔夫球的表面会做成一个又一个的凹坑,而并不是光滑的圆润的,这个实际上也是考虑了空气动力学的设计。

因为高尔夫球上的凹坑,它可以改变气流,从而让高尔夫球可以飞的更远。在这跟大家来说几个一些常见车型的风阻系数。最经典的老款捷达的风阻系数为0.32,老款的奥迪A6的风阻系数为0.28,常见的保时捷卡宴的风阻系数在0.39,一般越野车它的风阻系数都要比我们轿车要大一些。

那么风阻系数它对于油耗到底能产生多大的影响呢?根据实验表明,空气阻力系数每降低10%,它的燃油节省大概在7%左右。

这么说大家可能没有具体的一个概念,那就举个我们曾经做过的一个实验,我们用两台空气阻力系数不同的车辆,一台车的阻力系数为0.44,而另一台呢为0.25。

除了空气阻力系数以外,保持其他的条件相同,空气阻力系数小的汽车每行驶100千米,它可以节约1.7升左右的汽油。那么接下来说一下空气阻力的一个组成,也就是为什么会产生空气阻力。

第一个是压差阻力。汽车在行驶的过程当中会有气流沿着汽车的上表面流过,同时也会有气流沿着汽车的下表面通过。那么在上气流和下气流之间,也就是汽车尾部的区域,它会形成一个负压,大家可以理解为在汽车的尾部区域会存在一个真空区。

这样由于车头是正压,而车尾是负压,所以会形成一个推动汽车向后行驶的压力,这个就是压差阻力。给大家举一个生活当中的例子:

为什么三厢车它的后风挡上是没有雨刮器的,而两厢车的后风挡上却有雨刮器。有人说这是减配,实际上并不是这样的,这个也和我们的空气动力学是相关的。因为车的负压都是在汽车的尾部,所以两厢车的负压是形成在后风挡的附近。

这样呢它就容易卷起尘土或者雨水,进而影响车内的视线,所以两厢车必须要在后风挡上配备一个雨刮。但是三厢车则不一样,它的负压相当于形成在后备箱的尾部,所以它不需要单独加一个后风挡的雨刮,这并不是减配。

而压差阻力是我们空气阻力当中最大的一个阻力,可以占到总的空气阻力的50%到60%。 那么空气阻力的第二个就是摩擦阻力。由于空气的粘性,它会使得空气与车身表面产生摩擦而形成阻力。

摩擦阻力约占汽车总的空气阻力的6%到10%,它是与我们汽车表面的面积和粗糙度是有关系的。那空气阻力第三个就是诱导阻力。它实际上就是汽车的升力,沿着汽车行进方向相反方向的一个分力。在这里跟大家说一下汽车的升力是如何产生的。

刚刚说过汽车在行驶的过程当中会有气流从汽车的上表面和车底分别流过,但是汽车它的上表面是有弓形的,而车底又是相对平直的,这样就导致了上下气流的流速不同,压力就产生不同,最后会产生一个向上的升力。

那么升力过大就会减小轮胎对于地面的附着力。但是像我们的F1赛车,它可以通过尾翼等导流装置,可以产生一个负的升力,把我们的汽车压在地面上,进而可以增加车轮的附着力。那么诱导阻力一般占总的空气阻力的8%到15%之间。

最后一个我们来说一下干扰阻力。这个非常的好理解,它是由于汽车上的突出物等部件所导致的阻力。你比方说后视镜、雨刮器、流水槽等等,它们所产生的阻力就是干扰阻力,这个阻力可以占到总的空气阻力的5%到16%。

下面我们来说一下我们汽车上的空气动力学的一些设计。第一个在我们汽车的发动机盖上面都有突出的两条棱线,这两条棱线不但可以使汽车看起来有肌肉感,更重要的是它是空气动力学的设计。

这两条棱线它可以将汽车前方的一部分气流引导到车门后视镜的一个区域,进而降低空气阻力。然后我们再来说一下扰流板,有的汽车在前部装有前挡风板,它的主要目的是降低进入汽车底部的空气的量,进而减小空气阻力。

而后扰流板也就是我们常说的尾翼,它可以降低汽车的升力,进而减小诱导阻力。但是不管是前还是后扰流板,它的位置、尺寸和形状决定了它能够起到多大的作用。

还有一些车主呢会在侧面加上一个裙边,使得我们前后轮之间的车身侧面的下部非常的平整,进而可以减小车轮与气流的相互作用。那么大家也可能会看到过,有些概念车他把车轮完全的包裹起来,实际上也是为了减小车轮产生的空气阻力。

最后我们再来说一下敞篷车,如果敞篷车不进行空气动力学的设计,在前排的区域就会产生一个负压,并产生涡流,形象点来说呢就是驾驶员的头发会被卷起。

所以说敞篷车是要进行一些特殊的设计,那么一般敞篷车是通过在前排的下方引入空气,这样它就可以减小在前排的负压区域,进而可以排除气流对于我们驾驶员和成员的一个困扰。曾经也有车友问过我,汽车的外形很不规则,它的迎风面积是怎么计算得到的呢?

其实汽车的迎风面积实际上是通过我们在汽车的前部将其投影在一个墙上,那么它的正投影的面积就是它的迎风的面积了。

最后我们来说一下汽车的风洞实验,也就是如何对汽车的空气动力学进行验证。风洞实际上就是人工产生气流的一个装置。通过汽车的风动实验,我们可以了解汽车的空气动力学的特性,以及发动机冷却气流的进气和排气的性能等等。

如何逆风“飞行”?340km h的法拉利F8,拥有“逆天”空气动力学

汽车的流体力学已经成为了一项重要的学科,我觉得它甚至比船舶和飞机的力学要更难。因为船舶在水中只会遇到流水的阻力,而飞机飞到空中之后,只会遇到空气的阻力。但是汽车行驶在路上,即接受地面的摩擦力,同时也会遇到空气阻力。这或许也是为什么民航飞机,还有游艇的造型基本上都一样,但是跑车的造型却千差万别的原因吧。

目前,汽车越来越重视空气动力学技术,不管是超级跑车还是民用车都是如此。因为未来汽车的重量越来越轻,在高速行驶的时候需要用空气把汽车“按”在地面上,有利于行车安全。其次空气阻力的高低也与汽车油耗息息相关。第三,合理的利用空气阻力,还可以对发动机,刹车系统进行散热。因此,目前世界上各家厂商都非常重视空气动力学的研究。

目前在汽车领域,把空气动力学玩儿到极致的要数F1赛车,因为F1赛车的性能通常是以秒计算的,所以既要减小空气阻力,又要给赛车足够的下压力,提升性能,就非常重要。除了F1之外的其它赛车也会最大限度地利用空气动力学。

不过,赛车技术是很难全部用到民用量产车上的,因为民用量产车要考虑到空间还有实用性,虽然也会对空气动力学进行考虑,但是功能比较有限。

不过,目前还是有很多厂商使用了空气动力学零部件,不但能够提升新能。还能让整车的气质焕然一新,给人很强的驾驶欲。

Spoiler(扰流板)是用在保险杠下面,是让空气上下分离。它的结构是向外突出去的,可以做成不同的形状和角度。它的作用不但能给汽车一定的下压力,同时向上分离的空气还能通过进气格栅进去发动机舱,给发动机降温。

汽车的空气阻力有15%来自轮胎周边,Air Curtain(风幕)的作用就是尽可能的减小轮胎周边的空气阻力。它是通过前雾灯处的通风口将空气像后导流,在经过轮胎的时候,空气变得柔和,从而减少了阻力。当然这样的设计也可以使空气进入刹车系统,给刹车系统散热。

Air Scoop是减少空气流入车身下面,尽量多地把空气向上导流。并且在引擎盖上也设置了出气口,将空气引流。提供给车辆最大的下压力。通常这种赛车的马力很大,多出现在室内场地拉力赛上。

在最近几年新发布的豪华汽车,或者新能源汽车上普遍使用的主动进气格栅。顾名思义,主动进气格栅是发动机在不需要散热的时候,进气格栅关闭。使空气平缓的流过车头降低空气阻力。当夏季来临或者长时间行驶需要发动机散热的时候,进气格栅会自动打开。

Louver类似于百叶窗,主要的作用的调节风的方向。可以作为空调送风口,发动机散热口。之前,越是搭载性能强劲发动机的车型Louver的个数就越多。而现在,随着汽车设计,发动机技术的进步,使用Louver的车型逐渐少了,但是在兰博基尼等超级跑车上依然能够见到类似的设计。上图是1940年奔驰赛车上的Louver设计。

最近几年在很多民用车上出现了上面这种不起眼的小设计,它的作用一是让空气柔和的流动,二是利用空气压力提高稳定性,减小车辆左右晃动幅度。这种设计最早也是出现在F1赛车上,而最近丰田和雷克萨斯的民用车上开始使用这种设计。

Skirt(侧裙)的主要作用是对车辆侧面流动的空气,和车辆底盘下面流动的空气进行干预。在高速行驶的时候,抑制向上的升力。同时稳定住车身下面的空气流动,让底盘下面的空气不干扰车身侧面的空气。

NACA Duct简单来说就是赛车侧面的洞。它的作用是将空气阻力最小化,并且增大进气量。通常用在航空器和赛车上,在很多超级跑车上也能见到。这项技术从第二次世界大战期间开发,一直沿用至今。它的形状通常都是狭长的三角形,除了侧面以外,也用在引擎盖上。这样的造型最有利于空气的流动与提升进气量用于降温。

由于底盘的结构比较复杂,是一个不规则的形状,因此空气在此经过的时候,也是不规则的流动。如果车速很快,就会产生不小的噪音,并且提高风阻。现在的汽车普遍会将底盘做的平整,甚至会额外铺上一层护板以提高底盘的平整性。

一些新能源汽车上已经使用了气动轮圈和低滚阻的轮胎,气动轮圈可以降低车辆在旋转的时候带来的阻力。这样的轮圈在外观上比较平整,然后尽量不留缝隙。因此不太利于散热。这种轮圈可以出现在一般民用车上,高性能跑车是不太适合用气动轮圈的。

说到尾翼,这可能是我们最早对于汽车空气动力学了解的零部件了。很多车友为了让汽车变得有,也会自己在车尾安装一个小尾翼。目前,尾翼也分成了固定式与可伸缩调节角度两种。第一种固定的尾翼,就是给汽车尾部一个下压力,同时干扰空气,让空气通过车顶之后直接向上流走。第二种可伸缩和调节角度的电动尾翼,比如布加迪等车型,当尾翼完全垂直的时候,可以帮助缩短刹车距离。

车尾扩散器主要的作用是使空气散发,防止车尾产生乱流。它的造型就是保险杠下方的隔板。它可以使通过底盘的空气迅速发散,流走。因为空气的快速流走,车底的空气压力变低,使得车身更好地贴住地面。扩散器也是F1赛车中率先使用的,现在已经普及到很多民用性能车上。

现在很多车型的尾灯故意做出了边角,并且这些边角的突起是高于车身的。其实它们的作用也是起到对空气进行导流。让空气向中间施压,减少像四周的扩散。这样可以提高车辆的稳定性。

最后一个车尾雨刷,它并不能够对汽车的空气动力学产生多少好处,但是它的作用却是因为空气。通常来讲,三厢轿车的后玻璃是没有雨刷的,通过后玻璃加热就能把水汽蒸发掉。这是因为三厢轿车有后备箱,空气通过后备箱流走,顺便就把水汽也带走了。但是coupe车型,或者两厢车型,SUV等。由于后备箱较短,或者没有后备箱。因此空气在车尾会形成涡流。这些涡流不会把水汽带走。因此就只能借助雨刷器了,这就是为什么三厢车没有后玻璃雨刷,而两厢车有的原因。

空气动力大巴车的原理是什么?

法拉利在第89届日内瓦车展上带来了一个大惊喜:F8 Tributo,它不是真正的全新车型,也不会提供不伦不类的混合动力,它有很好的平台,是法拉利488的继任者,在纯粹的法拉利传统中,它有望超越它同辈,因为法拉利F8 Tributo有“逆天”的空气动力学,可以轻松达到340km/h。

法拉利F8 Tributo在向F40致敬,神话般的F40是法拉利下定决心发展空气动力学的先驱,因此,F8除了拥有非常高效的动力系统外,还有非常疯狂的空气动力学设计。它的前风格带有S型导管,这个开口吸收了汽车下方的空气,通过前包围上的柔性小翼,可以使车辆前端更好地贴合地面,这是一个强大的主动空气动力学。

车身的其他区域和底盘都相当平滑,这能够降低阻力并减少乱流,在车辆前部,分离器的设计用于引导空气通过车身侧面的风冷管道,用于冷却法拉利F8 Tributo巨大的制动器。平坦的底盘拥有不少于6个涡流发生器,左右两侧各有3个,这些涡流发生器能将空气从车辆下方拉出,引入道路。

在车身尾部,尾翼的末端向上微微翘起,可以充分利用尾翼下方的空气上窜效果,有效增加垂直荷载,带来更出色的下压力,进一步提升车辆尾部的贴地能力。同时,车辆尾部还有巨大的扩散器,与尾翼协同工作可以提供更大的下压力,并且在高速行驶过程中,可以减小阻力。

更重要的是,法拉利改变了散热器的位置,从而拥有了更高的效率,同时,中冷器已经扩大到足以将进气温度降低15℃,这样做的效果显而易见,法拉利F8 Tributo比普通版488多出了50马力,并且整体而言,F8 Tributo比普通版488的效率提升了10%,这是空气动力学优化带来的惊人效果。

法拉利F8 Tributo的核心仍然是4.0升V8双涡轮增压发动机,拥有720Ps马力和770N·m扭矩,能够在2.9秒达到100km/h,7.8秒内达到200km/h,最高时速可达340km/h,几乎与迈凯伦720S不相上下,这样出众的性能堪称逆风“飞行”。此外,法拉利“动态增强+”系统,可根据驾驶操作改变每个卡钳的制动压力,使车辆的操控更加精准、直观。

作为一辆道路合法跑车,尽管法拉利F8 Tributo的空气动力学已经非常“逆天”,但设计上仍然有所保留,我们也很期待以赛道为重点的版本能带来更强大的气流管理系统、以及更出色的下压力,毕竟,这样的空气动力学设计,除了顶级超跑以外,在我们平时接触的汽车上根本见不到。

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

关于空气动力学在汽车改装上存在的意义

空气动力大巴车的原理是用的却是一套密封的气体压缩和释放系统。

无需从外界压缩气体,只需要从内部循环使用缸内的氮气。设计者认为外界空气中的水分和尘埃会影响汽车动力系统的稳定性,而氮气是相对稳定的气体。它还具备制动能量回收功能,当汽车减速和制动时,惯性能量通过液压泵压缩空气到储气缸中。

扩展资料:

空气压缩机工作原理图,它需要电力驱动不过无论是MDI的空气动力车,还是翔天空气动力车,都无法摆脱能量守恒定律,因为它们本身并不具备制造压缩空气的能力。

以MDI研制的AIR POD为例,它在车上设置有一个压缩容量为300L的压缩空气罐,罐体由钢材制成,罐内储存的30MPa的压缩空气可供AIR POD行驶120千米,双缸版的最大速度可以达到80km/h。

安全性方面,目前空气动力车使用的压缩气体压强通常在30MPa,普通钢材制成的压缩气体罐即可满足安全储存的要求,考虑到空气动力车的用途和使用场所,压缩空气罐的储存安全性无须担忧。

在车载压缩气体耗尽之前,空气动力车必须前往就近的压缩空气站充气,而压缩空气需要消耗电能,电能又来源于核电站、火电站、水电站等,因此从本质上讲,空气动力车还是无法摆脱传统能源。

所以,我们需要对空气动力车有一个清晰的认识,在现阶段,空气动力车是无法摆脱传统能源的,空气动力车绝非朋友圈中所讲的“不需要传统能源就能跑”那样,如果压缩空气基站停电而无法继续压缩空气,那么大街上跑的空气动力车恐怕都得趴窝了。

百度百科—空气动力汽车

空气动力学存在的意义不仅仅在于汽车改装时可以改善汽车的操控性,让气流顺畅的穿过车身产生下压力;同时还可以降低油耗。

常见的做法就是在车头的下方加装一个坚固且比车头略长的扰流器。它可以将气流整齐地引导到发动机盖上,经过车尾的气流也要尽量保持整齐。

其实仔细观察双门轿跑车的侧面不难发现,从车头到车尾的线条会朝着车顶向上呈弧形,而车底则十分的平坦,这个形状和机翼截面的形状非常形似。当气流穿过这个机翼形状的物体时,从车体上方流过的气体一定比从车体下方流过的气体快,这样一来车辆便产生了一股浮升力。

房车和旅行车这种车型的后挡风玻璃比较垂直,浮升力对它们几乎没有影响,因为气流经过垂直的后窗后就已经变成乱流了,浮升力因此下降,但是这些乱流也正是气流拉力的来源。所以车厂在设计旅行车时会将车尾设计的垂直一点,因为一方面可以增加车内的空间,另一方面也缓解了在空气动力学上的不足。

汽车在行驶时并非在一个水平面上行驶,随着悬挂系统的上下运动,气流在穿过车体上下所造成的压力差也会随时改变,同时在车辆过弯时,车尾左右的气流动态也会对车尾的气流情况造成一定影响。

尾翼和扰流器的诞生正是要解决气流和浮升力的问题。在大街上可以见到的尾翼可以说是五花八门、千奇百怪。不过它们却都有着大致相同的特点,表面狭窄、安装时水平面离开车身,因为如果尾翼紧贴在车身安装的话,那么它仅仅会起到装饰作用。

尾翼的主要作用就是增加下压力,所以尾翼的外形必须像倒置的机翼才行,这样设计会使流经尾翼下端的气流的速度较流经尾翼上端的来得高,从而产生下压力。还有一种产生下压力的方法是将尾翼的前端微微向下倾斜,虽然这种设计会比水平式的尾翼产生更大的空气拉力。

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。